

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 4117-4121

Tetrahedron Letters

Rh(I)-catalyzed ring-closing reaction of allenynes: selective construction of cycloheptene, bicyclo[5.3.0]decadienone, and bicyclo[5.2.0]nonene frameworks

Chisato Mukai,* Fuyuhiko Inagaki, Tatsunori Yoshida and Shinji Kitagaki

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan

Received 19 February 2004; revised 19 March 2004; accepted 24 March 2004

Abstract—Highly selective formation of cycloheptene, bicyclo[5.3.0]decadienone, and bicyclo[5.2.0]nonene skeletons from tri- and tetrasubstituted allenynes has been achieved via a Rh(I)-catalyzed ring-closing reaction and proper choice of substrate and/or reaction conditions.

© 2004 Elsevier Ltd. All rights reserved.

The intramolecular Pauson-Khand reaction (PKR) of envnes is one of the most powerful tools available for the construction of bicyclo[3.3.0]octenones and bicyclo[4.3.0]nonenones. However, this attractive ring-closing method generally is not effective for the synthesis of bicyclo[5.3.0]decenones^{1,2} in large part due to entropic as well as enthalpic factors, which could impede the formation of larger-sized rings.³ Recent efforts from this laboratory have led to the development of a new and efficient procedure for the construction of the bicyclo[5.3.0]decadienone framework 2 ($R^3 = R^4 = H$) based on the Rh(I)-catalyzed intramolecular PKR of allenynes 1 ($R^3 = R^4 = H$).⁴ This ring-closing reaction selectively occurs between the distal double bond of the allenic moiety and the alkyne counterpart of 1 ($R^3 = R^4 = H$), resulting in the formation of the bicyclo[5.3.0]decadienones 2 ($R^3 = R^4 = H$) in moderate to high yields (Scheme 1).^{5,6}

We then applied this newly developed Rh(I)-catalyzed ring-closing reaction to tri- and tetrasubstituted allenynes. Depending on the substitution pattern of the allenic moiety of 1 (R^3 and/or R^4 = substituent) and/or reaction conditions, the selective construction of (i) 3-alkylidene-2-vinylcyclohept-1-ene, (ii) bicyclo[5.3.0]deca-1,7-dien-9-one, and (iii) 2-alkylidenebicyclo[5.2.0]non-1(9)-ene

* Corresponding author. Tel.: +81-76-234-4411; fax: +81-76-234-4410; e-mail: cmukai@kenroku.kanazawa-u.ac.jp

Scheme 1.

skeletons could be achieved. This letter describes our preliminary results.

According to the previously reported procedures⁴, the allene $3a^7$ having a methyl group at the allenic terminus was treated with 2.5 mol% of [RhCl(CO)₂]₂ in refluxing toluene under a CO atm to give the desired bicyclic compound 4a in 19% yield. However, the major product isolated from the reaction mixture was the seven-membered compound 5a with the crossed-triene moiety in 68% yield.⁸ Changing the catalyst from [RhCl(CO)₂]₂ to [RhCl(CO)dppp]₂ under similar conditions produced 4a and 5a in 37% and 47% yields, respectively (Scheme 2).⁸

The Rh(I)-catalyzed PKR^{9,10} of allenynes would be tentatively rationalized in terms of the intermediacy of the metallacyclopentene intermediate **A**, which would collapse to the bicyclo[5.3.0] ring system via insertion of CO (path a, Scheme 3), followed by reductive elimination.⁹ Alternatively, the methyl hydrogen at the allenic terminus of the intermediate **A** would be abstracted via β -hydride elimination (path b), leading to the formation

Keywords: Pauson–Khand reaction; Cycloisomerization; Bicyclo-[5.3.0]decane; Bicyclo[5.2.0]nonane; Allenyne; Electrocyclic reaction.

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.03.160

Scheme 2. Reaction conditions: (a) 2.5 mol% [RhCl(CO)₂]₂, toluene, reflux, 1 atm CO, 2.5 h, **4a** (19%), **5a** (68%); (b) 2.5 mol% [RhCl(CO)dppp]₂, toluene, reflux, 1 atm CO, 6 h, **4a** (37%), **5a** (47%).

Scheme 3.

of the triene derivative (Scheme 3).^{11–13} The latter process (path b) was not observed in the case of the Rh(I)-catalyzed PKR of 1 ($R^3 = R^4 = H$), where the lack of a methyl group (or its equivalent) at the allenic terminus

Table 1. Rh(I)-catalyzed PKR of 3

eliminated path b and made path a exclusively the favored one.

With these considerations in mind, we envisioned that increasing the CO pressure in the ring-closing reaction of **3a** would facilitate the CO insertion process (path a) resulting in the preferential formation of the bicyclo[5.3.0]decadienone 4a over β -hydride elimination (path b), whereas the ring-closing reaction under a N₂ atm (absence of external CO) must produce exclusively the triene derivative **5a**.^{14,15} Thus, the ring-closing reaction of 3a was carried out in the presence of [RhCl(CO)₂]₂ at 120 °C under 10 atm of CO (conditions A) to furnish the desired bicyclic compound 4a in 79% yield along with a small amount of 5a (8%). It should be noted that for the preparation of the 10-substituted-bicyclo[5.3.0]decadienone skeleton under conditions A, [RhCl(CO)dppp]₂ was found to be ineffective. Several allenynes having the RCH₂ functionality at the allenic terminus were submitted to conditions A. The results are summarized in Table 1, together with those obtained from the reaction under CO pressure (conditions B) as a control experiment. The ring-closing reaction of 3a-d under conditions A consistently produced the corresponding bicyclic compounds 4a-d in a highly selective manner in acceptable yields. However, conditions A were shown to be no longer effective for the ring-closing reaction of tetrasubstituted allenynes, such as 1 $(\mathbf{R}^3 = \mathbf{R}^4 = \mathbf{M}\mathbf{e}$ in Scheme 1, e.g.), resulting in an intractable mixture, from which only a small amount of the 3-alkylidene-2-vinylcyclohept-1-ene derivative could be isolated.

We next turned our attention to the development of the selective formation of the cycloheptene derivatives from

Conditions A: 10 atm CO, toluene, 120 $^\circ C$ (bath temperature) Conditions B: 1 atm CO, toluene, reflux

a: R ¹ =H, R ² =TMS; b: R ¹ =H, R ² =Ph; c: R ¹ = ⁿ Pr, R ² =TMS; d:
R ¹ =Ph, R ² =TMS

Entry	SM	Conditions	Bicyclo[5.3.0]		Triene		4:5
			4	Yield (%)	5	Yield (%)	
1	3a	А	4a	79	5a	8	91:9
2	3b	А	4b	80	5b	8	91:9
3 ^a	3c	А	4c	67	5c	_	100:0
4 ^a	3d	Α	4d	86	5d	—	100:0
5	3a	В	4a	19	5a	68	22:78
6	3b	В	4b	14	5b	62	18:82
7 ^a	3c	В	4c	24	5c	70 ^b	26:74
8 ^a	3d	В	4d	79	5d	7°	92:8

^a 5 mol % of [RhCl(CO)₂]₂ was used.

^b E/Z ratio (81:19) was determined by ¹H NMR spectrum.

^c E/Z ratio (72:28) was determined by ¹H NMR spectrum.

3. The ring-closing reaction of the trisubstituted allenynes 3a-d was carried out in refluxing toluene in the presence of [RhCl(CO)₂]₂ under a N₂ atm (conditions C) to furnish the corresponding 3-alkylidene-2-vinylcyclohept-1-ene derivatives 5a-d (Table 2). As expected, the bicyclo[5.3.0]decadienones 4a-c could never be detected in the reaction mixture (entries 1–3). In the ring-closing reaction of 3d, the corresponding CO-inserted product 4d (12%) was detected.¹⁶ Thus, we could now develop the complementary procedure for the construction of the bicyclo[5.3.0]deca-1,7-dien-9-one and 3-alkylidene-2-vinylcyclohept-1-ene frameworks, starting from the same trisubstituted allenynes 3, by changing the reaction conditions (conditions A and C).

In the next phase of this investigation, which involved the ring-closing reaction of tetrasubstituted allenynes under conditions C, the tetrasubstituted allenvne 3e having two methyl groups at the allenic terminus provided the corresponding cycloheptene 5e in 62% yield (80 °C instead of refluxing temperature). This result was similar to those observed in the cases of the trisubstituted allenynes 3a-d. Interestingly, and unexpectedly, the bicyclo[5.2.0]nonene derivative $6e^{17,18}$ was isolated as the major product (80%), along with a small amount of 5e (10%), when a similar ring-closing reaction was performed in refluxing xylene. The formation of 6e could be interpreted tentatively as occurring via the reversible thermal 4π -electrocyclic reaction of 5e. In fact, compounds 5e and 6e were heated separately in refluxing xylene to afford a mixture of **6e** and **5e** in a ratio of 4– 5:1. In addition, transformation of 5e to 6e was found to be accelerated by a catalytic amount of [RhCl(CO)₂]₂,¹⁹ although the role of [RhCl(CO)₂]₂ in this acceleration is still uncertain. It should be noted that the triene derivatives 5a-d, obtained from the trisubstituted allenynes **3a-d**, could never be converted into the corresponding bicyclo[5.2.0]nonene skeleton even in refluxing xylene for a prolonged period. The difference in reactivity between 5a and 5e, for example, would be interpreted provisionally by considering each preferred conformer.

Table 2. Rh(I)-catalyzed ring-closing reaction under N₂

 $\begin{array}{cccc} H & & 2.5 \text{ mol } \% \\ \hline RhCl(CO)_{2}]_{2} & & \\ PhO_{2}S & & & \\ \end{array} \\ \begin{array}{c} H & & R^{2} & & \\ \hline RhCl(CO)_{2}]_{2} & & \\ \hline toluene, \text{ reflux} \\ under N_{2} \\ (Conditions C) & & \\ \end{array} \\ \begin{array}{c} PhO_{2}S & & & \\ H \\ \hline R^{2} & & \\ \end{array} \\ \begin{array}{c} R^{2} & & \\ R^{2} & & \\ \hline Sa-d & & \\ \end{array} \end{array}$

Entry	Allenyne 3	\mathbf{R}^1	\mathbb{R}^2	Triene 5	Yield (%)
1	3a	Н	TMS	5a	59
2	3b	Н	Ph	5b	65
3 ^a	3c	ⁿ Pr	TMS	5c	66 ^b
4 ^c	3d	Ph	TMS	5d	57 ^{d,e}

^a 5 mol% of [RhCl(CO)₂]₂ was used.

^b E/Z ratio (79:21) was determined by ¹H NMR spectrum.

^c10mol% of [RhCl(CO)₂]₂ was used.

^dA small amount of 4d (12%) was obtained.

^e In this case, a mixture of two stereoisomers (E/Z = 39:61), due to the geometry of the C_3 -TMSmethylene group of 2-(E-phenylethenyl)cycloheptene derivative, was obtained.

Since the C₂-vinyl group of **5a** could rotate freely without any serious nonbonding repulsion, the preferred conformer of **5a** is not necessarily the one depicted in Scheme 2. This is not the case for **5e**, where the nonbonding interaction between the phenylsulfonyl group and the methyl moiety on the C₂-vinyl group would prevent free rotation of the C₂-propylene group as well as make the conformer depicted in Scheme 4 the preferred one. Thus, **5e** could be transformed easily into **6e** via the 4π -electrocyclic reaction.

Several tetrasubstituted allenynes were then submitted to conditions C to confirm the applicability of this novel tandem cyclization. The results are summarized in Table 3. The terminal alkyne derivative **3f** afforded exclusively the bicyclo[5.2.0] derivative **6f** in refluxing toluene with a lower yield (58%) compared to **6e**, presumably due to its instability (entry 1)^{20,21}. Allenynes **3g,h** having methyl and phenyl groups at the allenic terminus provided **6g,h** in high yields (entries 2 and 3). In the case of **3i**, the triene compound **5i** was obtained as a major product (56%) along with the desired **6i** in 12% yield (entry 4). Higher reaction temperatures did not improve the chemical yield of **6i**. In addition, interconversion between **5i** and **6i** in the presence of [RhCl(CO)₂]₂ was

Entry	Allenyne	Products (yield)	
1 ^b	Me Me	PhO ₂ S	PhO ₂ S
	PhO ₂ S () ₄	Me	Me
	3f Me R PhO_2S Ph	5f () PhO ₂ S R Ph	6f (58%) PhO ₂ S R Ph
2	3g : $R = Ph$	5g (—)	6g (88%)
3	3h : $R = 4-NO_2C_6H_4$	5h (—)	6h (78%)
4	3i : $R = CO_2Et$	5i (56%)	6i (12%)
5	PhO ₂ S Ph	PhO ₂ S	PhO ₂ S
	3j	5j (91%) Ph	6j (—) Ph

Table 3. Rh(I)-catalyzed tandem cycloisomerization-electrocyclization of 3ª

^a Reaction was carried out in refluxing xylene under the influence of 2.5 mol% [RhCl(CO₂)]₂.

^b The reaction was carried out in refluxing toluene.

unsuccessful, presumably due to the weak coordinating ability of the α , β -unsaturated ester functionality with the rhodium catalyst. The ring-closing reaction of **3**j having a cyclohexylidene moiety provided the triene **5**j, and not **6**j, in high yield (entry 5). The exclusive formation of **5**j might reflect the steric repulsion between a cyclohexene ring and the phenylsulfonyl group, which would interfere with the transformation of **5**j into **6**j.

In summary, a reliable procedure for not only the construction of the 10-substituted-bicyclo[5.3.0]decadienone ring system, but also for the preparation of the 3-alkylidene-2-vinylcyclohept-1-ene framework has been developed by selecting appropriate reaction conditions, starting from the same trisubstituted allenynes. We have also succeeded in constructing a novel bicyclo-[5.2.0]nonene framework by the Rh(I)-catalyzed consecutive cycloisomerization and electrocyclic reaction of tetrasubstituted allenynes. Application of these newly developed cyclization methods to the synthesis of natural products is now in progress.

Acknowledgement

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, to which the authors' thanks are due.

References and notes

1. For attempts at constructing the bicyclo[5.3.0]decenone skeleton via the intramolecular PKR of enynes, see: (a)

Wender, P. A.; McDonald, F. E. *Tetrahedron Lett.* **1990**, *31*, 3691–3694; (b) Mukai, C.; Sonobe, H.; Kim, J. S.; Hanaoka, M. J. Org. Chem. **2000**, *65*, 6654–6659.

- For construction of seven- and larger-membered rings via PKR of enynes with an aromatic ring as a template, see: (a) Pérez-Serrano, L.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. Chem. Commun. 2001, 2602–2603; (b) Krafft, M. E.; Fu, Z.; Boñaga, L. V. R. Tetrahedron Lett. 2001, 42, 1427–1431; (c) Lovely, C. J.; Seshadri, H.; Wayland, B. R.; Cordes, A. W. Org. Lett. 2001, 3, 2607– 2610; (d) Barluenga, J.; Sanz, R.; Fañanás, F. J. Chem. Eur. J. 1997, 3, 1324–1336.
- 3. Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95–102.
- (a) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755–1758; (b) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376–1385.
- Brummond et al. have reported the [RhCl(CO)₂]₂-catalyzed PKR of allenynes, which involves four successful examples of the formation of the bicyclo[5.3.0]decadienone skeleton: Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org. Lett. 2002, 4, 1931–1934; Brummond, K. M.; Gao, D. Org. Lett. 2003, 5, 3491–3494.
- For other examples of the formation of the bicyclo[5.3.0]decane skeleton via transition metal-catalyzed PKR of allenynes, see: (a) Shibata, T.; Koga, Y.; Narasaka, K. *Bull. Chem. Soc. Jpn.* **1995**, *68*, 911–919; (b) Ahmar, M.; Locatelli, C.; Colombier, D.; Cazes, B. *Tetrahedron Lett.* **1997**, *38*, 5281–5284.
- The allenynes 3 were prepared from commercially available 1,7-octadiyne in three or four steps as follows: (i) EtMgBr, THF, 0→40 °C, then aldehyde or ketone, 0 °C; (ii) "BuLi, TMSCl, THF, -78 °C, then 10% aq HCl (for 3a,c, and d), or PhI, PdCl₂(PPh₃)₂, CuI, 'Pr₂NH, THF (for 3b,e,g-j); (iii) PhSCl, Et₃N, THF, -78 °C; (iv) mCPBA, CH₂Cl₂, 0 °C.
- 8. The bicyclo[4.3.0]nonenone derivative could never be detected in the reaction mixture.

- (a) Jeong, N.; Lee, S.; Sung, B. K. Organometallics 1998, 17, 3642–3644; (b) Jeong, N.; Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122, 6771–6772.
- (a) Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett. 1998, 249–250; (b) Kobayashi, T.; Koga, Y.; Narasaka, K. J. Organomet. Chem. 2001, 624, 73–87.
- For reviews on cycloisomerization of enynes, see: (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34–42; (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813– 834.
- For Rh(I)-catalyzed enyne cycloisomerization, see: Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490–6491.
- 13. For Rh(I)-catalyzed allenene cycloisomerization, see: Makino, T.; Itoh, K. *Tetrahedron Lett.* **2003**, *44*, 6335–6338.
- 14. During this on-going study, a similar Rh(I)-catalyzed allenyne cycloisomerization has been reported independently by two groups. Brummond et al. have reported the [RhCl(CO)₂]₂-catalyzed construction of six-membered triene derivatives: Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186–15187; An example of the preparation of seven-membered oxacycle with triene moiety using a RhCl(PPh₃)₃-catalyzed reaction, developed by Shibata et al., has also been reported. Shibata, T.; Takesue, Y.; Kadowaki, S.; Takagi, K. Synlett 2003, 268–270.

- For other examples of transition metal-catalyzed allenyne cycloisomerizations, see: (a) Pagenkopf, B. L.; Belanger, D. B.; O'Mahony, D. J. R.; Livinghouse, T. Synthesis 2000, 1009–1019; (b) Oh, C. H.; Jung, S. H.; Rhim, C. Y. Tetrahedron Lett. 2001, 42, 8669–8671.
- [RhCl(CO)dppp]₂ was shown to be fruitless in the transformation of 3d into 5d.
- Formation of fused cyclobutenes from allenynes has been reported. For transition metal-mediated cycloadditions, see: Shen, Q.; Hammond, G. B. J. Am. Chem. Soc. 2002, 124, 6534–6535; For thermal cyclizations, see: Cao, H.; Flippen-Anderson, J.; Cook, J. M. J. Am. Chem. Soc. 2003, 125, 3230–3231.
- Formation of the bicyclo[5.2.0]nonene skeleton via thermolysis of 2-azetidinone-tethered enallenes has been reported: Alcaide, B.; Almendros, P.; Aragoncillo, C. Org. Lett. 2003, 5, 3795–3798.
- 19. Reaction of 5e in the presence of [RhCl(CO)₂]₂ for 9 h provided 6e in 60% yield, along with recovered 5e (11%), whereas only 42% yield of 6e and 10% of the recovered 5e were obtained in the absence of Rh(I) catalyst for 9 h.
- 20. Refluxing 3f in xylene resulted in decomposition.
- 21. Allenyne having TMS group at the alkyne terminus afforded the corresponding bicyclo[5.2.0]nonene derivative in 34% yield.